Epigenetic reprogramming and induced pluripotency.

نویسندگان

  • Konrad Hochedlinger
  • Kathrin Plath
چکیده

The cloning of animals from adult cells has demonstrated that the developmental state of adult cells can be reprogrammed into that of embryonic cells by uncharacterized factors within the oocyte. More recently, transcription factors have been identified that can induce pluripotency in somatic cells without the use of oocytes, generating induced pluripotent stem (iPS) cells. iPS cells provide a unique platform to dissect the molecular mechanisms that underlie epigenetic reprogramming. Moreover, iPS cells can teach us about principles of normal development and disease, and might ultimately facilitate the treatment of patients by custom-tailored cell therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetics of Reprogramming to Induced Pluripotency

Reprogramming to induced pluripotent stem cells (iPSCs) proceeds in a stepwise manner with reprogramming factor binding, transcription, and chromatin states changing during transitions. Evidence is emerging that epigenetic priming events early in the process may be critical for pluripotency induction later. Chromatin and its regulators are important controllers of reprogramming, and reprogrammi...

متن کامل

Epigenetic mechanisms of induced pluripotency

Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) requires profound alterations in the epigenetic landscape. During reprogramming, a change in chromatin structure resets the gene expression and stabilises self-renewal. Reprogramming is a highly inefficient process, in part due to multiple epigenetic barriers. Although many epigenetic factors have already been shown to aff...

متن کامل

Epigenetic Aberrations Are Not Specific to Transcription Factor-Mediated Reprogramming

Somatic cells can be reprogrammed to pluripotency using different methods. In comparison with pluripotent cells obtained through somatic nuclear transfer, induced pluripotent stem cells (iPSCs) exhibit a higher number of epigenetic errors. Furthermore, most of these abnormalities have been described to be intrinsic to the iPSC technology. Here, we investigate whether the aberrant epigenetic pat...

متن کامل

Epigenetic Modifiers Facilitate Induction and Pluripotency of Porcine iPSCs

Inadequate silencing of exogenous genes represents a major obstacle to complete epigenetic reprogramming of porcine-induced pluripotent stem cells (piPSCs) by conventional pluripotency transcription factors (OSKM). We tested the hypothesis that epigenetic modification by active DNA or histone demethylation or by inhibition of histone deacetylase would enhance reprogramming and exogenous gene si...

متن کامل

MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency

The chromatin template imposes an epigenetic barrier during the process of somatic cell reprogramming. Using fibroblasts derived from macroH2A double knockout (dKO) mice, here we show that these histone variants act cooperatively as a barrier to induced pluripotency. Through manipulation of macroH2A isoforms, we further demonstrate that macroH2A2 is the predominant barrier to reprogramming. Gen...

متن کامل

Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts.

Induction of pluripotency in differentiated cells through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and cellular Myc involves reprogramming at the epigenetic level. Histones and their metabolism governed by histone chaperones constitute an important regulator of epigenetic control. We hypothesized that histone chaperones facilitate or inhibit the course of reprogram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 4  شماره 

صفحات  -

تاریخ انتشار 2009